Sains Malaysiana 54(4)(2025): 1063-1076

http://doi.org/10.17576/jsm-2025-5404-08

 

Development of a Mercury Sensor using Voltammetry Techniques based on Waste Tire Carbon Electrodes Modified with Zinc Oxide Doped Ion Imprinted Polypyrrole

(Pembangunan Penderia Merkuri menggunakan Teknik Voltammetri Berdasarkan Elektrod Karbon Tayar Sisa Diubah Suai dengan Zink Oksida Terdop Ion Polipirol Bercetak)

 

MERI DAYANTI1, SAGIR ALVA2, LELIFAJRI LELIFAJRI1, NAZARUDDIN NAZARUDDIN1, JULINAWATI JULINAWATI1, SUKOMA SUKOMA1, SYAFRIZAL FONNA3, AHMAD KAMAL ARIFIN4, SITI AISHAH HASBULLAH5, ANDRIY ANTA KACARIBU6, MUHAMMAD SAID7 & KHAIRI SUHUD1,*

 

1Department of Chemistry, Mathematics, and Natural Science Faculty, Universitas Syiah Kuala (USK), Indonesia

2Department of Mechanical Engineering, Faculty of Engineering, Universitas Mercu Buana, Indonesia

3Mechanical Engineering and Industrial Engineering Department, Engineering Faculty, Universitas Syiah Kuala (USK), Indonesia

4Centre of Integrated Design for Advanced Mechanical System (PRISMA), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

5Department of Chemistry, Faculty of Science Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

6Doctoral Program of Agricultural Science, Postgraduate School, Universitas Syiah Kuala (USK), Indonesia

7Department of Chemistry, Mathematics and Science Faculty, University of Sriwijaya, Indonesia

 

Diserahkan: 23 Julai 2024/ Diterima: 17 Disember 2024

 

Abstract

Waste Tire Carbon (WTC) was chosen as the carbon source for fabricating the mercury sensor. Tires are inherently carbon-rich (88%) and are considered elastomer blends. While WTC has been used as a sensor for mercury detection, the resulting sensitivity has been relatively low. Therefore, modifications to the working electrode are necessary to improve mercury detection. One such modification involves using nanoparticles, specifically zinc oxide (ZnO) doped with ion-imprinted polypyrrole (PPy). The modified WTC electrodes with ZnO and PPy were characterized using Fourier Transform Infrared (FT-IR) and Scanning Electron Microscopy (SEM). A 0.1 M KCl solution was used as the supporting electrolyte. The calibration curve was linear, with an R² of 0.9977, a concentration range of 0.01-8.00 ppm, a limit of detection (LoD) of 0.03 ppm, and a limit of quantification (LoQ) of 0.07 ppm, with %RSD below 2%. Selectivity tests were conducted to measure Hg2+ ions by adding the metal ions, namely Ag+ and Pb2+. The test results showed that the electrode had good selectivity, although there was a decrease in the peak current from 16 mA to 15,45 mA. These results indicate that the developed method is highly sensitive and selective to Hg concentrations.

Keywords: Electrode; mercury; polypyrrole; voltammetry; ZnO

 

Abstrak

Karbon Tayar Sisa (WTC) dipilih sebagai sumber karbon untuk fabrikasi elektrod kerja merkuri. Tayar sememangnya kaya dengan karbon (88%) dan dianggap sebagai campuran elastomer. Walaupun WTC telah digunakan sebagai penderia untuk pengesanan merkuri, sensitiviti yang terhasil adalah agak rendah. Oleh itu, pengubahsuaian pada elektrod kerja adalah perlu untuk meningkatkan pengesanan merkuri. Satu pengubahsuaian sedemikian melibatkan penggunaan zarah nano, khususnya zink oksida (ZnO) yang didopkan dengan polipirol bercetak ion (PPy). Elektrod WTC yang diubah suai dengan ZnO dan PPy telah dicirikan menggunakan Transformasi Fourier Inframerah (FT-IR) dan Mikroskopi Elektron Pengimbasan (SEM). Larutan KCl 0.1 M digunakan sebagai elektrolit penyokong. Keluk penentukuran adalah linear dengan nilai R2 0.9977, julat kepekatan 0.01-8.00 ppm, had pengesanan (LoD) 0.03 ppm dan had kuantifikasi (LoQ) 0.07 ppm dengan %RSD < 2%. Ujian selektiviti telah dijalankan untuk mengukur ion Hg²⁺ dengan menambahkan ion logam, iaitu Ag⁺ dan Pb²⁺. Keputusan ujian menunjukkan bahawa elektrod mempunyai selektiviti yang baik, walaupun terdapat penurunan arus puncak daripada 16 mA kepada 15.45 mA. Hasil ini menunjukkan bahawa kaedah yang dibangunkan mempunyai sensitiviti dan selektiviti yang tinggi terhadap kepekatan Hg. Keputusan ini menunjukkan bahawa kaedah yang dibangunkan adalah sangat sensitif dan selektiviti terhadap kepekatan Hg.

Kata kunci: Elektrod; merkuri; polipirol; voltammetri; ZnO

 

RUJUKAN

Ait-Touchente, Z., Sakhraoui, H.E.E.Y., Fourati, N., Zerrouki, C., Maouche, N., Yaakoubi, N., Touzani, R. & Chehimi, M.M. 2020. High-performance zinc oxide nanorod-doped ion imprinted polypyrrole for the selective electrosensing of mercury ii ions. Applied Sciences (Switzerland) 10(19): 7010. https://doi.org/10.3390/app10197010

Baihaqi, Suhud, K., Alva, S., Safitri, E., Julinawati, Ginting, B., Fonna, S., Arifin, A.K., Zulnazri, Z. & Islami, N. 2023. Fabrication of mercury (Hg) sensor based on Tire Waste (TW) carbon electrode and voltammetry technique. Sinergi 27(3): 415-422. https://doi.org/10.22441/sinergi.2023.3.012

Bayindir, S. 2019. A simple rhodanine-based fluorescent sensor for mercury and copper: The recognition of Hg2+ in aqueous solution, and Hg2+/Cu2+ in organic solvent. Journal of Photochemistry and Photobiology A: Chemistry 372: 235-244. https://doi.org/https://doi.org/10.1016/j.jphotochem.2018.12.021

Bhattacharyya, A.S. 2024. Conducting polymers in biosensing: A review. Chemical Physics Impact 8: 100642. https://doi.org/10.1016/j.chphi.2024.100642

Bogdanowicz, R., Ficek, M., Malinowska, N., Gupta, S., Meek, R., Niedziałkowski, P., Rycewicz, M., Sawczak, M., Ryl, J. & Ossowski, T. 2020. Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes. Journal of Electroanalytical Chemistry 862: 114016.  https://doi.org/10.1016/j.jelechem.2020.114016

Cheng, H., Zhang, W., Wang, Y. & Liu, J. 2018. Graphene oxide as a stationary phase for speciation of inorganic and organic species of mercury, arsenic, and selenium using HPLC with ICP-MS detection. Microchimica Acta 185: 425.

Harvey, D. 2009. Analytical Chemistry 2.0. North America: McGraw-Hill Companies, Inc.

Hussain, R.T., Islam, A.K.M.S., Khairuddean, M. & Suah, F.B.M. 2022. A polypyrrole/GO/ZnO nanocomposite-modified pencil graphite electrode for the determination of andrographolide in aqueous samples. Alexandria Engineering Journal 61(6): 4209-4218. https://doi.org/10.1016/j.aej.2021.09.040

Jerimiyas, N., Elaiyappillai, E., Kumar, Senthil, A., Huang, S.T. & Mani, V. 2018. Bismuth nanoparticles decorated graphene carbon nanotubes modified screen-printed electrodes for mercury detection. Journal of the Taiwan Institute of Chemical Engineers 95: 5747-5766. https://doi.org/https://doi.org/10.1016/j.jtice.2018.08.030

Jin, M., Yuan, H., Liu, B., Peng, J., Xu, L. & Yang, D. 2020. Review of the distribution and detection methods of heavy metals in the environment. Analytical Methods 12(48): 5747-5766. https://doi.org/10.1039/D0AY01577F

Jung, W., Dunham, C.S., Perrotta, K.A., Chen, Y., Gimzewski, J.K. & Loo, J.A. 2022. Optimizing methods for ICP-MS analysis of mercury in fish: An upper-division analytical chemistry laboratory class. Journal of Chemical Education 99(10): 3566-3572. https://doi.org/10.1021/acs.jchemed.2c00429

Kausar, A. 2021. Perspectives on nanocomposite with polypyrrole and nanoparticles. In Conducting Polymer-based Nanocomposites: Fundamentals and Applications, edited by Kausar, A. Elsevier. pp. 103-128. https://doi.org/https://doi.org/10.1016/B978-0-12-822463-2.00006-3

Kawde, A.N. 2017. Trace determination of Hg(II) in human saliva using disposable electrochemically pretreated graphite pencil electrode surfaces. Acta Chimica Slovenica 64: 267-275. https://doi.org/DOI: 10.17344/acsi.2016.2538

Koesmawati, T.A., Febrianti, F., Halim, R., Fitria, N., Tanuwidjaja, S., Rohman, O. & Syamsudin, A. 2023. Mercury determination in fish using cold vapour-atomic absorption spectrometry (CV-AAS) with sodium borohydride (NaBH4) as the reductor. IOP Conference Series: Earth and Environmental Science 1201: 012026. https://doi.org/10.1088/1755-1315/1201/1/012026

Kondo, T., Kikuchi, M., Masuda, H., Katsumata, F., Aikawa, T. & Yuasa, M. 2018. Boron-doped diamond powder as a durable support for platinum-based cathode catalysts in polymer electrolyte fuel cells. Journal of the Electrochemical Society 165(6): 3072-3077. https://doi.org/10.1149/2.0111806jes

Li, L., Bi, R., Wang, Z., Xu, C., Li, B., Luan, L., Chen, X., Xue, F., Zhang, S. & Zhao, N. 2019. Speciation of mercury using high-performance liquid chromatography-inductively coupled plasma mass spectrometry following enrichment by dithizone functionalized magnetite-reduced graphene oxide. Spectrochimica Acta - Part B Atomic Spectroscopy. 159: 105653. https://doi.org/10.1016/j.sab.2019.105653

Li, X., Yin, Z., Zhai, Y., Kang, W., Shi, H. & Li, Z. 2020. Magnetic solid-phase extraction of four β-lactams using polypyrrole-coated magnetic nanoparticles from water samples by micellar electrokinetic capillary chromatography analysis. Journal of Chromatography A. 1610: 460541. https://doi.org/10.1016/j.chroma.2019.460541

Munandar & Alamsyah, A. 2016. Kajian kandungan logam berta merkuri (Hg) pada kerang air tawar (Anodonta sp) di kawasan hilir sub Das Krueng Meureubo, Aceh Barat. Perikanan Tropis 3(1): 11-19.

Pang, A., Arsad, A. & Ahmadipour, M. 2020. Synthesis and factor affecting on the conductivity of polypyrrole: A short review. Polymers Advanced Technologies 32(4): 1428-1454. https://doi.org/DOI:10.10002/pat.5201

Ramanavicius, S. & Ramanavicius, A. 2021. Conducting polymers in the design of biosensors and biofuel cells. Polymers 13(1): 49. https://doi.org/10.3390/polym13010049

Ramanavičius, A., Ramanavičiene, A. & Malinauskas, A. 2006. Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta 51(27): 6025-6037. https://doi.org/10.1016/j.electacta.2005.11.052

Ran, Q., Sheng, F., Chang, G., Zhong, M. & Xu, S. 2022. Sulfur-doped reduced graphene oxide@chitosan composite for the selective and sensitive electrochemical detection of Hg2+ in fish muscle. Microchemical Journal 175: 107138. https://doi.org/https://doi.org/10.1016/j.microc.2021.107138

Sapari, S., Razak, N., Hasbullah, S., Heng, L.Y., Chong, K.F. & Tan, L.L. 2020. A regenerable screen-printed voltammetric Hg(II) ion sensor based on tris-thiourea organic chelating ligand grafted graphene nanomaterial. Journal of Electroanalytical Chemistry 878: 114670. https://doi.org/https://doi.org/10.1016/j.jelechem.2020.114670

Siddiqui, S., Nafady, A., El-Sagher, H.M., Al-Saeedi, S.I., Alsalme, A.M., Sirajuddin, Talpur, F.N., Sherazi, S.T.H., Kalhoro, M.S., Shah, M.R., Shaikh, T., Arain, M. & Bhargava, S.K. 2019. Sub-ppt level voltammetric sensor for Hg2+ detection based on Nafion stabilized l-cysteine-capped Au@Ag core-shell nanoparticles. Journal of Solid State Electrochemistry 23: 2073-2083. https://doi.org/https://doi.org/10.1007/s10008-019-04298-2

Some, I., Sakira, A., Mertens, D., Ronkart, S. & Kauffmann, J. 2016. Determination of groundwater mercury (II) content using a disposable gold modified screen-printed carbon electrode. Talanta 152: 335-340. https://doi.org/https://doi.org/10.1016/j.talanta.2016.02.033

Uttaravalli, A.N., Dinda, S., Kakara, V.R., Rao, A.V.R., Daida, T. & Gidla, B.R. 2022. Sustainable use of recycled soot (carbon black) for the cleaner production of value-added products: A compendium. Chemical Engineering Journal Advances 11: 100342. https://doi.org/10.1016/j.ceja.2022.100324

Xu, T., Dai, H. & Jin, Y. 2020. Electrochemical sensing of lead(II) by differential pulse voltammetry using conductive polypyrrole nanoparticles. Microchimica Acta 187: 23. https://doi.org/https://doi.org/10.1007/s00604-019-4027-z

 

*Pengarang untuk surat-menyurat; email: khairi@usk.ac.id

 

 

 

 

 

 

 

 

           

sebelumnya