Sains
Malaysiana 54(4)(2025): 1063-1076
http://doi.org/10.17576/jsm-2025-5404-08
Development of a Mercury Sensor using
Voltammetry Techniques based on Waste Tire Carbon Electrodes Modified with Zinc
Oxide Doped Ion Imprinted Polypyrrole
(Pembangunan
Penderia Merkuri menggunakan Teknik Voltammetri Berdasarkan Elektrod Karbon
Tayar Sisa Diubah Suai dengan Zink Oksida Terdop Ion Polipirol Bercetak)
MERI DAYANTI1,
SAGIR ALVA2, LELIFAJRI LELIFAJRI1, NAZARUDDIN NAZARUDDIN1,
JULINAWATI JULINAWATI1, SUKOMA SUKOMA1, SYAFRIZAL FONNA3,
AHMAD KAMAL ARIFIN4, SITI AISHAH HASBULLAH5, ANDRIY ANTA
KACARIBU6, MUHAMMAD SAID7 & KHAIRI SUHUD1,*
1Department of Chemistry, Mathematics, and Natural Science Faculty,
Universitas Syiah Kuala (USK), Indonesia
2Department of Mechanical Engineering, Faculty of Engineering,
Universitas Mercu Buana, Indonesia
3Mechanical Engineering and Industrial Engineering Department,
Engineering Faculty, Universitas Syiah Kuala (USK), Indonesia
4Centre of Integrated Design for Advanced
Mechanical System (PRISMA), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
5Department of Chemistry,
Faculty of Science Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
6Doctoral Program of Agricultural
Science, Postgraduate School, Universitas Syiah Kuala (USK), Indonesia
7Department of Chemistry, Mathematics
and Science Faculty, University of Sriwijaya, Indonesia
Diserahkan:
23 Julai 2024/ Diterima: 17 Disember 2024
Abstract
Waste Tire Carbon (WTC) was chosen as the
carbon source for fabricating the mercury sensor. Tires are inherently carbon-rich
(88%) and are considered elastomer blends. While WTC has been used as a sensor
for mercury detection, the resulting sensitivity has been relatively low.
Therefore, modifications to the working electrode are necessary to improve
mercury detection. One such modification involves using nanoparticles,
specifically zinc oxide (ZnO) doped with ion-imprinted polypyrrole (PPy). The
modified WTC electrodes with ZnO and PPy were characterized using Fourier
Transform Infrared (FT-IR) and Scanning Electron Microscopy (SEM). A 0.1 M KCl
solution was used as the supporting electrolyte. The calibration curve was
linear, with an R² of 0.9977, a concentration range of 0.01-8.00 ppm, a limit
of detection (LoD) of 0.03 ppm, and a limit of quantification (LoQ) of 0.07
ppm, with %RSD below 2%. Selectivity tests were conducted to measure Hg2+ ions by adding the metal ions, namely Ag+ and Pb2+. The
test results showed that the electrode had good selectivity, although there was
a decrease in the peak current from 16 mA to 15,45 mA. These results indicate
that the developed method is highly sensitive and selective to Hg
concentrations.
Keywords:
Electrode; mercury; polypyrrole; voltammetry; ZnO
Abstrak
Karbon Tayar Sisa (WTC) dipilih sebagai sumber karbon untuk fabrikasi
elektrod kerja merkuri. Tayar sememangnya kaya dengan karbon (88%) dan dianggap
sebagai campuran elastomer. Walaupun WTC telah digunakan sebagai penderia untuk pengesanan
merkuri, sensitiviti yang terhasil adalah agak rendah. Oleh itu, pengubahsuaian
pada elektrod kerja adalah perlu untuk meningkatkan pengesanan merkuri. Satu
pengubahsuaian sedemikian melibatkan penggunaan zarah nano, khususnya zink
oksida (ZnO) yang didopkan dengan polipirol bercetak ion (PPy). Elektrod WTC yang
diubah suai dengan ZnO dan PPy telah dicirikan menggunakan Transformasi Fourier
Inframerah (FT-IR) dan Mikroskopi Elektron Pengimbasan (SEM). Larutan KCl 0.1 M
digunakan sebagai elektrolit penyokong. Keluk penentukuran adalah linear dengan
nilai R2 0.9977, julat kepekatan 0.01-8.00 ppm, had pengesanan (LoD)
0.03 ppm dan had kuantifikasi (LoQ) 0.07 ppm dengan %RSD < 2%. Ujian
selektiviti telah dijalankan untuk mengukur ion Hg²⁺ dengan menambahkan
ion logam, iaitu Ag⁺ dan Pb²⁺. Keputusan ujian menunjukkan bahawa
elektrod mempunyai selektiviti yang baik, walaupun terdapat penurunan arus
puncak daripada 16 mA kepada 15.45 mA. Hasil ini menunjukkan bahawa kaedah yang
dibangunkan mempunyai sensitiviti dan selektiviti yang tinggi terhadap
kepekatan Hg. Keputusan ini menunjukkan bahawa kaedah yang dibangunkan adalah
sangat sensitif dan selektiviti terhadap kepekatan Hg.
Kata
kunci: Elektrod; merkuri; polipirol;
voltammetri; ZnO
RUJUKAN
Ait-Touchente, Z., Sakhraoui, H.E.E.Y., Fourati, N.,
Zerrouki, C., Maouche, N., Yaakoubi, N., Touzani, R. & Chehimi, M.M. 2020.
High-performance zinc oxide nanorod-doped ion imprinted polypyrrole for the
selective electrosensing of mercury ii ions. Applied Sciences (Switzerland) 10(19): 7010. https://doi.org/10.3390/app10197010
Baihaqi, Suhud, K., Alva, S., Safitri, E.,
Julinawati, Ginting, B., Fonna, S., Arifin, A.K., Zulnazri, Z. & Islami, N.
2023. Fabrication of mercury (Hg) sensor based on Tire Waste (TW) carbon
electrode and voltammetry technique. Sinergi 27(3): 415-422. https://doi.org/10.22441/sinergi.2023.3.012
Bogdanowicz, R., Ficek, M., Malinowska, N.,
Gupta, S., Meek, R., Niedziałkowski, P., Rycewicz, M., Sawczak, M., Ryl,
J. & Ossowski, T. 2020. Electrochemical performance of thin free-standing
boron-doped diamond nanosheet electrodes. Journal of Electroanalytical
Chemistry 862: 114016. https://doi.org/10.1016/j.jelechem.2020.114016
Cheng, H., Zhang, W., Wang, Y. & Liu, J.
2018. Graphene oxide as a stationary phase for speciation of inorganic and
organic species of mercury, arsenic, and selenium using HPLC with ICP-MS
detection. Microchimica Acta 185: 425.
Harvey, D. 2009. Analytical Chemistry 2.0.
North America: McGraw-Hill Companies, Inc.
Hussain, R.T., Islam, A.K.M.S., Khairuddean,
M. & Suah, F.B.M. 2022. A polypyrrole/GO/ZnO nanocomposite-modified pencil
graphite electrode for the determination of andrographolide in aqueous samples. Alexandria Engineering Journal 61(6): 4209-4218. https://doi.org/10.1016/j.aej.2021.09.040
Jerimiyas, N., Elaiyappillai, E., Kumar,
Senthil, A., Huang, S.T. & Mani, V. 2018. Bismuth nanoparticles decorated
graphene carbon nanotubes modified screen-printed electrodes for mercury
detection. Journal of the Taiwan Institute of Chemical Engineers 95:
5747-5766. https://doi.org/https://doi.org/10.1016/j.jtice.2018.08.030
Jin, M., Yuan, H., Liu, B., Peng, J., Xu, L.
& Yang, D. 2020. Review of the distribution and detection methods of heavy
metals in the environment. Analytical Methods 12(48): 5747-5766. https://doi.org/10.1039/D0AY01577F
Jung, W., Dunham, C.S., Perrotta, K.A., Chen,
Y., Gimzewski, J.K. & Loo, J.A. 2022. Optimizing methods for ICP-MS analysis
of mercury in fish: An upper-division analytical chemistry laboratory class. Journal
of Chemical Education 99(10): 3566-3572. https://doi.org/10.1021/acs.jchemed.2c00429
Kawde, A.N. 2017. Trace determination of
Hg(II) in human saliva using disposable electrochemically pretreated graphite
pencil electrode surfaces. Acta Chimica Slovenica 64: 267-275. https://doi.org/DOI:
10.17344/acsi.2016.2538
Koesmawati, T.A., Febrianti, F., Halim, R.,
Fitria, N., Tanuwidjaja, S., Rohman, O. & Syamsudin, A. 2023. Mercury determination
in fish using cold vapour-atomic absorption spectrometry (CV-AAS) with sodium
borohydride (NaBH4) as the reductor. IOP Conference Series: Earth
and Environmental Science 1201: 012026. https://doi.org/10.1088/1755-1315/1201/1/012026
Kondo, T., Kikuchi, M., Masuda, H.,
Katsumata, F., Aikawa, T. & Yuasa, M. 2018. Boron-doped diamond powder as a
durable support for platinum-based cathode catalysts in polymer electrolyte
fuel cells. Journal of the Electrochemical Society 165(6): 3072-3077. https://doi.org/10.1149/2.0111806jes
Li, L., Bi, R., Wang, Z., Xu, C., Li, B.,
Luan, L., Chen, X., Xue, F., Zhang, S. & Zhao, N. 2019. Speciation of
mercury using high-performance liquid chromatography-inductively coupled plasma
mass spectrometry following enrichment by dithizone functionalized
magnetite-reduced graphene oxide. Spectrochimica Acta - Part B Atomic
Spectroscopy. 159: 105653. https://doi.org/10.1016/j.sab.2019.105653
Li, X., Yin, Z., Zhai, Y., Kang, W., Shi, H.
& Li, Z. 2020. Magnetic solid-phase extraction of four β-lactams using
polypyrrole-coated magnetic nanoparticles from water samples by micellar
electrokinetic capillary chromatography analysis. Journal of Chromatography
A. 1610: 460541. https://doi.org/10.1016/j.chroma.2019.460541
Munandar & Alamsyah, A. 2016. Kajian kandungan
logam berta merkuri (Hg) pada kerang air tawar (Anodonta sp) di kawasan
hilir sub Das Krueng Meureubo, Aceh Barat. Perikanan Tropis 3(1): 11-19.
Pang, A., Arsad, A. & Ahmadipour, M.
2020. Synthesis and factor affecting on the conductivity of polypyrrole: A
short review. Polymers Advanced Technologies 32(4): 1428-1454. https://doi.org/DOI:10.10002/pat.5201
Sapari, S., Razak, N., Hasbullah, S., Heng,
L.Y., Chong, K.F. & Tan, L.L. 2020. A regenerable screen-printed
voltammetric Hg(II) ion sensor based on tris-thiourea organic chelating ligand
grafted graphene nanomaterial. Journal of Electroanalytical Chemistry 878: 114670. https://doi.org/https://doi.org/10.1016/j.jelechem.2020.114670
Siddiqui, S., Nafady, A., El-Sagher, H.M.,
Al-Saeedi, S.I., Alsalme, A.M., Sirajuddin, Talpur, F.N., Sherazi, S.T.H.,
Kalhoro, M.S., Shah, M.R., Shaikh, T., Arain, M. & Bhargava, S.K. 2019.
Sub-ppt level voltammetric sensor for Hg2+ detection based on Nafion
stabilized l-cysteine-capped Au@Ag core-shell nanoparticles. Journal of
Solid State Electrochemistry 23: 2073-2083. https://doi.org/https://doi.org/10.1007/s10008-019-04298-2
Uttaravalli, A.N., Dinda, S., Kakara, V.R.,
Rao, A.V.R., Daida, T. & Gidla, B.R. 2022. Sustainable use of recycled soot
(carbon black) for the cleaner production of value-added products: A
compendium. Chemical Engineering Journal Advances 11: 100342. https://doi.org/10.1016/j.ceja.2022.100324
Xu, T., Dai, H. & Jin, Y. 2020.
Electrochemical sensing of lead(II) by differential pulse voltammetry using
conductive polypyrrole nanoparticles. Microchimica Acta 187: 23. https://doi.org/https://doi.org/10.1007/s00604-019-4027-z
*Pengarang untuk surat-menyurat;
email: khairi@usk.ac.id